

Do Fissures Influence Bone Porosity in the Distal Metacarpus of the Thoroughbred Racehorse? A Feasibility Study

Rachel Macleod

Supervisors: Dr Sarah Taylor, Dr Carola Daniel and Dr Lucy Kershaw

Kindly sponsored by the Beaufort Cottage Educational Trust

Introduction: Background

- Fractures of the lateral condyle of MC3 are the most common reason for euthanasia on UK racecourses (Parkin et al., 2004)
- Significant welfare concern
- Pre-fracture markers:
 - Bone density/porosity correlated with stress fracture risk in human athletes (Bennell et al., 1996).
- Ultrashort Echo Time (UTE) MRI sequences used to evaluate bone porosity
- Subchondral bone appears as a signal void on conventional MRI due to its short T2* (Ma et al., 2020).
- UTE sequences aim to capture more signal from the subchondral bone collecting data using a very short TE

Introduction: Water in Bone

- Bone is composed of three main components: hydroxyapatite crystals, collagen and water
- Water exists in two forms: bound water and pore water
- Bound water: very short T2* (0.3ms) and not normally detectable with MRI, except UTE
- Pore water: free water in bone pores: vascular canals, lacunae and canaliculi; T2* of 1ms-1s
- Porosity index (PI) represents cortical bone porosity and has been shown to correlate with bone porosity measured by micro-CT (Rajapakse et al., 2015)
- UTE image = bound water + pore water
- Long TE image = pore water only
- Ratio of these two signals = PI
- PI = PW : (PW + BW)

Aim:

To determine if there is a difference in the porosity index of the parasagittal groove of the third metacarpal (MC3) in horses with fissures compared to controls

Method

- Approval: VERC of the University of Edinburgh (VERC no.: 35.21)
- Distal limbs collected from TB racehorses subjected to euthanasia on Scottish racecourses from 2019 to 2021
- Reason for euthanasia and signalment were recorded, limbs frozen at -20°C
- The limbs defrosted 24hrs prior to imaging and maintained at 20°C
- Prior to MRI, limbs were radiographed (flexed DP)
- Siemens Skyra[™] 3 Tesla MRI along with a phantom
- High resolution peripheral quantitative computed tomography as part of another study
- The presence of fissure fractures on T1 TSE was recorded

Scanning and ROI Measurement

- Scanning protocol: T1 TSE, UTE, TIRM (STIR) in three orthogonal planes
- Regions of interest (ROI) were drawn around the cortical bone of the medial and lateral parasagittal grooves on T1 TSE sequences and copied to the UTE sequences
- The ROI position was adjusted for every slice to account for individual variation in anatomy but its shape and size remained the same for comparability
- The porosity index was calculated and recorded

Results

- Signalment:
 - Median age = 6 years
 - Age range = 3-11 years
 - All TB geldings
- Six hind legs and two forelegs
- Reasons for euthanasia:
 - Four legs from horses with a clinical stress fracture (proximal phalanx and humeral)
 - Four legs from horses without a clinical stress fracture (sudden death and rotational fall)

Leg 24 - Fissured

Leg 18 - Control

Porosity Indices

Leg Number	Lateral PSG Porosity Index (%)	Lateral PSG Standard Deviation	Medial PSG Porosity Index (%)	Medial PSG Standard Deviation
18	16.3	5	16	3.7
19	14.7	4.4	17.8	4.2
20	18.1	4.4	17.6	4.1
21	18.9	5.4	19.5	5.3
22	20	4.8	16.5	4.5
23	16.1	5.5	18	5.3
24	16.7	5.2	17.6	4.8
25	15.9	4.4	18	3.8

Porosity Indices of Controls Vs. Fissured

Discussion

- A method was developed to measure the porosity index of the subchondral bone surrounding the parasagittal ridge of MC3 in horses
- Porosity index values were similar to those determined in previous studies in humans (18-35% in Rajapakse et al., 2015)
- No difference in porosity index was seen between the two horses with fissures and the two controls but this is a very small sample size
 - Whitton et al. (2010) reported lower porosity in condylar fatigue fracture cases than resting controls

Discussion

- There was no difference in porosity index in horses with fissures versus controls.
 - Porosity increases with age (Rajapakse et al., 2015) not controlled for in this project
 - Unknown training history
 - Fissures can be an incidental finding

Limitations

- Small sample size
- Sample population pathology
- Cadaveric material, frozen (Johnston et al., 2021)

Conclusion

- Cortical bone porosity index appears to be a quantitative MRI technique that is measurable using high field UTE sequences
- There was no difference in porosity index in horses with fissures versus controls
- Further work is required to:
 - Determine the best location of the volumetric ROI
 - Validate the porosity index values against pore size determined using microCT with a greater sample size

Acknowledgements:

- Beaufort Cottage Educational Trust
- Dr Carola Daniel, Royal (Dick) School of Veterinary Studies, University of Edinburgh
- Dr Lucy Kershaw, Queen's Medical Research Institute, University of Edinburgh
- Dr Sarah Taylor, Royal (Dick) School of Veterinary Studies, University of Edinburgh
- Owners of the horses whose bodies were donated for this research
- Pathology team of the Royal (Dick) School of Veterinary Studies, University of Edinburgh

References:

- Bennell, K., Malcolm, S., Thomas, S., Reid, S., Brukner, P., Ebeling, P., Wark, J., 1996. Risk Factors for Stress Fractures in Track and Field Athletes: A Twelve-Month Prospective Study. The American Journal of Sports Medicine, 24(6), pp. 810–818.
- Johnston, G., Ahern, B., Woldeyohannes, S. and Young, A., 2021. Does the Low-Field MRI Appearance of Intraosseous STIR Hyperintensity in Equine Cadaver Limbs Change when Subjected to a Freeze-Thaw Process?. Animals, 11(2), p.475.
- Ma, Y., Jerban, S., Jang, H., Chang, D., Chang, E. and Du, J., 2020. Quantitative Ultrashort Echo Time (UTE) Magnetic Resonance Imaging of Bone: An Update. *Frontiers in Endocrinology*, 11, p.667.
- Parkin, T., French, N., Riggs, C., Morgan, K., Clegg, P., Proudman, C., Singer, E. and Webbon, P., 2004. Risk of fatal distal limb fractures among thoroughbreds involved in the five types of racing in the United Kingdom. Veterinary Record, 154(16), pp.493-497.
- Rajapakse, C., Bashoor-Zadeh, M., Li, C., Sun, W., Wright, A. and Wehrli, F., 2015. Volumetric Cortical Bone Porosity Assessment with MR Imaging: Validation and Clinical Feasibility. Radiology, 276(2), pp.526-535.
- Whitton, R., Trope, G., Ghasem-Zadeh, A., Anderson, G., Parkin, T., Mackie, E. and Seeman, E., 2010. Third metacarpal condylar fatigue fractures in equine athletes occur within previously modelled subchondral bone. Bone, 47(4), pp.826-831.

