Recurrent Laryngeal Neuropathy (RLN): Pathogenesis and management

June 14, 2017

Norm G. Ducharme DVM, MSc, Diplomate ACVS
James Law Professor of Surgery
Cornell University Equine Hospital, Ithaca, NY
Cornell Ruffian Equine Specialists, Elmont, NY
• **Laryngeal collapses:**

 – Recurrent Laryngeal Neuropathy:

 • **Naturally-occurring disease** is a bilateral mononeuropathy of the recurrent laryngeal nerves. (Collins et al., 2009)

 • **Acquired/preventable**: Trauma, iatrogenic damage, hepatic disease, lead poisoning.

 – Non-RLN Laryngeal collapses:

 • Unilateral/bilateral non-RLN laryngeal collapse
 • Unilateral or Bilateral Ventral Midline Arytenoid Deviation
 • Congenital structural malformation: Fourth branchial arch defect (4-BAD)
 • Acquired structural malformation: Arytenoid chondritis
• Naturally-occurring disease:
 – Prevalence 3% (TB) – 43% (Draft) - Lane et al., 2003, Brakenhoff et al., 2005.
 – Can be genetic (see presentation of Professor Vince Gerber “Genetic risk factors for equine respiratory disease”)
Recognition and awareness

- Not all horses with laryngeal collapse have naturally-occurring recurrent laryngeal neuropathy.
- The prognosis, treatment and/or management varies depending on the various causes of laryngeal collapse.
- AND the co-morbid disease: AE fold collapses, DDSP
- So identify acquired/trauma RLN and other causes of laryngeal collapse.
RLN does not always mean naturally-occurring disease

• Need to assess:
 – Look for physical evidence of iatrogenic or trauma to recurrent laryngeal n. (i.e., Horner syndrome)
 – Focus on appearance of laryngeal collapse.
 – Neuromuscular status of laryngeal musculature.
 – Status of laryngeal cartilages.
Current understanding in treatment of RLN

• Static treatment- non-physiological:
 • Ventriculo-cordectomy (i.e. Hobday)
 • Laryngoplasty (i.e. tieback)
 • Arytenoidectomy

• Dynamic treatment (physiological):
 • Laryngeal reinnervation
 • Laryngeal pacemaker (muscle and nerve? Rehabilitation?)
Sound Analysis
Experimental Data - Cordectomy and Ventriculocordectomy (VC)

• Bilateral VC significantly improved abnormal inspiratory noise by end of 90 days (Brown et al., 2003).

• Unilateral laser VC significantly improved sounds but not as effectively as bilateral VC (Robinson et al., 2006).

• Unilateral laser vocal cordectomy only gave mild improvement in abnormal inspiratory noise (Brown et al, 2005).
Naturally-occurring disease

- Elimination of abnormal sounds in 66% n=92 (Taylor et al., EVJ 2006).
- Elimination of abnormal sounds in 82%, n=22 (Henderson et al., JAVMA 2007).
- Reduction of abnormal sounds in draught horses better after VEC (n=19) than VE (n=11) (Cramp et al., 2009).
Laryngoplasty

<table>
<thead>
<tr>
<th></th>
<th>80% HR MAX</th>
<th></th>
<th>100% HR MAX</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>control</td>
<td>LPVC</td>
<td>control</td>
<td>LPVC</td>
</tr>
<tr>
<td>(V_T) (liters/breath)</td>
<td>13</td>
<td>12</td>
<td>14.5</td>
<td>12.5</td>
</tr>
<tr>
<td>(V_E) (liters/min)</td>
<td>1013</td>
<td>948</td>
<td>1293</td>
<td>1128*</td>
</tr>
<tr>
<td>(P_{ui}) (mm Hg)</td>
<td>-4</td>
<td>-4</td>
<td>-13</td>
<td>-17</td>
</tr>
<tr>
<td>PIF (L/sec)</td>
<td>-43</td>
<td>-39</td>
<td>-59</td>
<td>-49</td>
</tr>
<tr>
<td>(Z_1) (mmHg/l/sec)</td>
<td>0.29</td>
<td>0.35</td>
<td>0.46</td>
<td>0.59</td>
</tr>
<tr>
<td>(P_{aO_2})</td>
<td>86</td>
<td>84</td>
<td>73</td>
<td>66</td>
</tr>
<tr>
<td>(P_{aCO_2})</td>
<td>37</td>
<td>39</td>
<td>43</td>
<td>50*</td>
</tr>
</tbody>
</table>

* Different from control, Adjusted Means Results (n=6)

Radcliffe et al., 2006
Prosthetic Laryngoplasty in Racehorses (Performance)

- Sakai 2016
- Rafettio 2015
- Mason 2013
- Acento 2012
- Wiliamson 2012
- Witte 2008
- Radcliffe 2004
- Kid 2002
- Davenport 2001
- Strand 2000
- Hawkins 1997
- Russel 1994
- Speirs 1983
- Goulden 1982
Tracheal aspirations post surgery

- 95 horses with persistent DDSP and/or dysphagia cases.
- 57 treated with laryngeal tie-forward.
- 23 treated with injection bulking.
- 15 other treatments.
Dynamic treatments
After nerve-pedicle laryngeal reinnervation (n=63)

- Time to first start range from 7.5-8.6 months.
- 95% return to racing.
- 58% earned more money per start after surgery.

Nerve-pedicle being replaced by nerve implantation laryngeal reinnervation

Fulton 2003
Rossignol et al., 2016

